II B.Tech - I Semester - Regular Examinations - FEBRUARY 2022

NETWORK THEORY AND ANALYSIS (ELECTRONICS \& COMMUNICATION ENGINEERING)

Duration: 3 hours

Max. Marks: 70
Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.
2. All parts of Question must be answered in one place.

UNIT - I

1. a) Find i_{x} when $i_{s}=(2 \sin 5 t) A$ is supplied to the circuit.

b) Determine the effective value of the periodic waveform shown in fig.

2. a) A relay coil is connected to a $210 \mathrm{~V}-50 \mathrm{~Hz}$ supply. If 7 M it has a resistance of 30Ω and an inductance of 0.5 H .
Calculate the apparent power and the power factor.
b) Calculate v_{o} in the circuit shown in fig.

UNIT - II

3. a) Find the capacitor voltage for t < 0 and $\mathrm{t}>0$ for the circuit shown in fig.

b) Determine $v(t)$ for $t>0$ in the circuit shown in fig. if $\mathrm{v}(0)=0$.

4. a) For the network shown in fig. find $i(t)$ for $t>0$.

b) Determine $\mathrm{i}(\mathrm{t})$ for $\mathrm{t}>0$ in the circuit shown in fig.

UNIT-III

5. a) Using Mesh analysis, find I_{1} and I_{2} in the circuit shown 7 M in fig.

6. a) Using Nodal analysis, find V_{1} and V_{2} in the circuit shown in fig.

b) Obtain Norton's and Thevenin's equivalent circuit at terminals a-b .

UNIT - IV

7. a) Determine the y parameters for the two port networks. 7 M

b) Derive and express the Z-parameters, Y-parameters in terms of ABCD parameters.

OR
8. a) Find h-parameters and g-parameters for the two port network as a function of s .

b) Given that $[\mathrm{g}]=\left[\begin{array}{cc}0.06 S & -0.4 \\ 0.2 & 2 \Omega\end{array}\right]$ determine Z and $\mathrm{T} \quad 7 \mathrm{M}$ parameters.

UNIT - V

9. a) For the circuit shown in fig, find the frequency ω for which $v(t)$ and $i(t)$ are in phase.

b) A parallel resonant circuit with quality factor 120 has a resonant frequency $6 \times 10^{6} \mathrm{rad} / \mathrm{sec}$. Calculate the bandwidth and half power frequencies.

OR
10. a) For the circuit shown in fig. find resonant frequency ω_{0} and $\mathrm{Z}_{\text {in }}$

[^0]
[^0]: b) Explain series and parallel resonance. What are their similarities and dissimilarities?

